AppetiteEAZE

Powered by SiPore® – Clinically Studied, Patented Silica Technology

Clinical applications

- · Supports reduction of post-meal blood sugar spikes*
- · Helps regulate starch and fat digestion*
- Supports reduced cravings and improved satiety*
- Aids in weight management and healthy metabolic function*
- Promotes digestive comfort and reduced bloating*

AppetiteEAZE features SiPore®, a clinically researched, mesoporous silica compound developed in Sweden and patented in the U.S. (US Pat. 10,695,294 & 12,121,612). With a unique structure that traps digestive enzymes, SiPore® reduces the activity of α-amylase and lipase, leading to slower digestion of carbohydrates and fats.*

This non-systemic mechanism means the ingredient works locally in the gut — it is not absorbed into the body. Glucose Stabiliser offers a natural, drug-free strategy for postprandial glycemic control and appetite regulation.*

Mechanism of action

1. Enzyme Trapping

SiPore® sequesters α -amylase and lipase, reducing starch and fat breakdown.*

2. Slower Digestion

Digestive slowdown leads to delayed carbohydrate and fat absorption.*

3. Fewer Sugar Spikes

Clinical studies show SiPore® significantly reduces post-meal blood glucose.*

4. Appetite & Weight Effects

Animal and early human data suggest potential for reduced food efficiency and cravings.*

120 Capsules

Key ingredient

SiPore® (Silicon Dioxide):

750 mg per 2-capsule serving

Non-Systemic and 100% natural.* Entraps digestive enzymes α-amylase and lipase.*

Human clinical study highlight

Randomized Controlled Trial (Reif, 2025):

In one of the largest trials in prediabetes or early-stage type 2 diabetes, SiPore21® significantly improved HbA1c, LDL-C, total cholesterol, body weight, fat mass, and abdominal fat indicators, while preserving lean mass and beta-cell function.*

Postprandial Study (Baek, 2023):

SiPore21 $^{\circ}$ significantly reduced blood glucose after standardized starch ingestion (P < 0.0001).*

12-Week Open-Label Trial (Baek et al, 2022):

In people with prediabetes and type 2 diabetes, 9 g/day SiPore15® reduced HbA1c, LDL cholesterol, and sagittal abdominal diameter.*

Safety Study (Hagman et al, 2020):

Oral intake of up to 9 g/day was safe and well tolerated in humans.*

SUPPLEMENT FACTS

SERVING SIZE: 2 Capsules SERVINGS PER CONTAINER: 60

AMOUNT PER % DAILY SERVING VALUE

750 mg

SiPore® (Silicon Dioxide)

† Daily value not established

OTHER Ingredients: Hydroxypropyl Methylcellulose (veggie capsule)

Directions of use

Take **4 capsules daily** — 2 with **lunch**, 2 with **dinner**, with water.

Formulation highlights

100% Vegan Gluten-Free, Fat-Free No GMOs, Artificial Additives Clinically Supported and Patent Protected

Storage and cautions

Store in a cool, dry place away from children

Not recommended during pregnancy or breastfeeding without physician guidance

Diabetic patients on medication should monitor blood glucose and consult a healthcare provider

Manufactured for:

The 3rd Opinion Inc 3601 Broadway, Edmond, OK 1-800-431-7902. www.starrwalker.com

References

Baek J. GR 2023-10-11 Postprandial study report: Evaluation of blood glucose levels following food consumption with SiPore21® or placebo. Sigrid Therapeutics. 2023-10-11. 8 pgs.

Baek J, Robert-Nicoud G, Herrera Hidalgo C, et al. Engineered mesoporous silica reduces long-term blood glucose, HbA1c, and improves metabolic parameters in prediabetics. Nanomedicine (Lond). 2022;17(1):9-22. doi:10.2217/nnm-2021-0235

Hagman E, Elimam A, Kupferschmidt N, et al. Oral intake of mesoporous silica is safe and well tolerated in male humans. PLoS One. 2020;15(10):e0240030. doi:10.1371/journal.pone.0240030

Hu H, Fan X, Guo Q, et al. Silicon dioxide nanoparticles induce insulin resistance through endoplasmic reticulum stress and generation of reactive oxygen species. Particle and fibre toxicology. 2019;16:41. doi:10.1186/s12989-019-0327-z

Iqbal MN, Jaworski A, Pinon AC, Bengtsson T, Hedin N. Activity and Stability of Nanoconfined Alpha-Amylase in Mesoporous Silica. ACS Mater Au. 2023;3(6):659-668. Published 2023 Aug 4. doi:10.1021/acsmaterialsau.3c00028

Kupferschmidt N, Csikasz RI, Ballell L, Bengtsson T, Garcia-Bennett AE. Large pore mesoporous silica induced weight loss in obese mice. Nanomedicine (Lond). 2014;9(9):1353-1362. doi:10.2217/nnm.13.138

Reif E. and Baek J. GR 2025-05-15 SHINE Clinical Investigation report, Sigrid Therapeutics, 2025. 172 pgs

Rinde M, Kupferschmidt N, Iqbal MN, et al. Mesoporous silica with precisely controlled pores reduces food efficiency and suppresses weight gain in mice. Nanomedicine (Lond). 2020;15(2):131-144. doi:10.2217/nnm-2019-0262.

Structure/Function Claims. U.S. Food & Drug Administration. Content current as of 03/28/2024. Accessed April 12, 2024 from https://www.fda.gov/food/food-labeling-nutrition/structurefunction-claims.

Waara ER, et al. "Entrapping Digestive Enzymes with Engineered Mesoporous Silica Particles Reduces Metabolic Risk Factors in Humans." Advanced healthcare materials vol. 9,11 (2020): e2000057. doi:10.1002/adhm.202000057.

